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Today’s lecture

• Last time: linearized structural macro models induce SVMA representations

yt =

∞∑
ℓ=0

Θℓεt−ℓ

• Next couple of lectures: how can we use time series data to learn about the Θℓ’s?

• Today: crash course on time series fundamentals

◦ Basic concepts: autocovariances, spectra, projections

◦ Linear models: VMA, VAR, VARMA

◦ Wold decomposition

See syllabus for textbook treatments. This will be a highly selective review, and very far from any
research frontier. Much more detailed coverage in 14.384.
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Time series analysis

• Time series: data with a time ordering
◦ Series have trends and are correlated over time. We see one realization (“history”)
◦ Inference requires us to make assumptions ensuring that “the present is like the past”, in

some loose sense
• Let’s start by defining stochastic processes over time:

Definition
An n-dimensional stochastic process is a collection {yt}t∈T of n-dimensional vectors defined
on a probability space (Ω,F , P ).

◦ The distribution of a stochastic process is summarized by distribution functions:
Ft1,...,tk (y1, . . . , yk) ≡ P (yt1 ≤ y1, . . . , ytk ≤ yk)

for all finite collections of time points t1, t2, . . . , tk ∈ T
◦ Randomness is across different histories of y . We only see one.
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Strict stationarity

• What does it mean for the present to be like the past?

• One natural starting point is the assumption of (strict) stationarity:

Definition
A stochastic process {yt} (t = 0, 1, 2, . . . ) is strictly stationary if

(yt , . . . , yt+k)
d
= (yt+ℓ, . . . , yt+ℓ+k)

for all k, ℓ, where “ d=” means “has the same joint distribution as”.

◦ In words: the distribution of a subsample of any given length does not depend on the point
in time at which the subsample starts

◦ Given such an assumption (+ “independence for far enough y ’s”), a realization of a
stochastic process could allow us to learn about the distribution function P
Note: formalization of independence notion is the assumption of ergodicity.
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Covariance stationarity

• In this class we pay particular attention to second-moment properties of time series:
One reason: given short aggregate time series, higher-order moments are very hard to estimate.

Definition
A stochastic process {yt} is weakly (or covariance) stationary if:

1. E(yt) does not depend on t

2. Cov(yt , yt−ℓ) ≡ E [(yt − E(yt))(yt−ℓ − E(yt−ℓ))′] exists, is finite, and depends only on ℓ, not t

• In light of this it makes sense to define:
a) Mean: µy = E(yt)
b) Covariance: Γy (ℓ) ≡ Cov(yt , yt−ℓ)

• We will throughout be studying covariance-stationary processes
Will use: those second-moment properties—i.e., E(•) and Cov(•)—are estimable.
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Autocovariance function

• Write the autocovariance function as

Γy (ℓ) ≡

Cov(y1t , y1t−ℓ) . . . Cov(y1t , ynt−ℓ)... . . . ...
Cov(ynt , y1t−ℓ) . . . Cov(ynt , ynt−ℓ)


I.e., for each ℓ, Γy (ℓ) is an n × n matrix
• It has the following properties:

a) Γy (ℓ) = Γy (−ℓ)′

b) |Γy,i j(ℓ)| ≤
√
Γy,i i(0)Γy,j j(0)

• The autocovariance function is our first of three fundamental representations: it fully
summarizes all second-moment properties of a covariance-stationary time series process
As said above, note that this representation is in principle estimable—for a covariance-stationary process
we can get all covariances from long enough time series.
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Autocorrelation function

• Can similarly define the autocorrelation function:

Ry (ℓ) ≡

Corr(y1t , y1t−ℓ) . . . Corr(y1t , ynt−ℓ)... . . . ...
Corr(ynt , y1t−ℓ) . . . Corr(ynt , ynt−ℓ)


◦ That is, we have

Ry,i j(ℓ) =
Γy,i j(ℓ)√

Γy,i i(0)Γy,j j(0)

• Same properties, plus Ry,i i(0) = 1 for all i
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Definition

• The spectrum is defined as a function of the autocovariance function

Definition
Let {yt} have an absolutely summable autocovariance function Γy (•). Then the spectral
density function (or spectrum) is defined as

sy (ω) ≡
1

2π

∞∑
ℓ=−∞

e−iωℓΓy (ℓ), ω ∈ [−π, π]

◦ Note that we can also invert this mapping to get

Γy (ℓ) =

∫ π

−π
e iωℓsy (ω)dω

• So the spectral density is just the Fourier transform of the ACF. As the mapping is
1-1, it is our second fundamental representation. But why should we care about it?
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Interpretation

• To make some progress on interpreting the spectrum, consider the following process:

yt =

N−1∑
j=0

{
u(ωj) cos(ωj t) + v(ωj) sin(ωj t)

}
◦ Notation: N ∈ N, ωj ≡ 2πj

N − π, σ(•) is a function from [−π, π] to R+ s.t. σ(ω) = σ(−ω)
and (u(ωj), v(ωj))j=0,1,...,N−1 are mean-zero, uncorrelated random variables with

Var(u(ωj)) = Var(v(ωj)) =
2π

N
σ(ωj)

◦ In words: yt is a sum of N cosine and sine waves with frequency ωj and random and
independent weights u and v
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Illustration: sine and cosine waves
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Illustration: random sums of sinusoids
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Interpretation

• First observation: yt is a covariance-stationary process with ACF
[Verify this! Hint: cos(α) cos(β) + sin(α) sin(β) = cos(α− β)]

Γy (ℓ) =
2π

N

N−1∑
j=0

σ(ωj) cos(ωjℓ)

• Second observation: the σ → ACF link looks a lot like the spectral density → ACF link
◦ Note that, for a scalar time series, we have that [Hint: e iωℓ = cos(ωℓ) + i sin(ωℓ) and then use

the fact that sy (ω) = sy (−ω).]

Γy (ℓ) =

∫ π
−π
e iωℓsy (ω)dω =

∫ π

−π
cos(ωℓ)sy (ω)dω

This looks like the previous expression, but with N →∞ (very loosely)
◦ But our function σ(•) has a clear interpretation: it is the variance corresponding to cycles

with frequencies ωj . Does the spectral density have a similar interpretation?
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Interpretation

• Affirmative answer is provided by the spectral representation theorem:

◦ We can write every covariance-stationary, mean-0 time series as

yt =

∫ π

−π
cos(ωt)du(ω) +

∫ π
−π
sin(ωt)dv(ω) =

∫ π
−π
e iωtdz(ω)

where u and v are orthogonal “innovations” for each ω and dz(ω) = du(ω)− idv(ω)

◦ Let σy (ω)dω = Var(dz(ω)). Can show that indeed σy (ω) = sy (ω) is the spectrum.

• Takeaways:

1. Spectral representations split time series into independent components. That’s useful:
replace complicated dependence structures over time with simpler, independent pieces
across frequencies.

2. sy (ω) has a clean interpretation as the volatility of each of these independent pieces
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Linear projections

• Many of our arguments will exploit linear projections. Easy with finite dimensions:

Definition
Let y be a scalar random variable, and x be an n-dimensional random vector. The best linear
predictor of y given x is given by

E∗(y | x) ≡ β′x

where
β ≡ argmin

b∈Rn
E
[
(y − b′x)2

]
Note that this implicitly requires finite second moments.

• The best linear predictor is often referred to as the linear (or least-squares) projection
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Linear projections

• In this class we will routinely project onto infinitely many random variables, e.g. all
current and past values of some macro observables xt , {xt−ℓ}∞ℓ=0
• Formal way to do so is Hilbert space theory. Sketch of key ideas:

[see chapter 2 of Brockwell & Davis for the formal treatment]

◦ Let {xi}i∈I be a collection of scalar random variables. Let span(xi , i ∈ I) denote the space
of all limits of (weighted) sums of the xi ’s.

◦ There exists a unique random variable ŷ ∈ span(xi , i ∈ I) such that

E
[
(y − ŷ)2

]
= inf
z∈span(xi ,i∈I)

E
[
(y − z)2

]
◦ ŷ ≡ E∗(y | {xi}i∈I) is the best linear prediction. It satisfies

E [(y − ŷ) x̃ ] = 0 for all x̃ ∈ span(xi , i ∈ I)
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White Noise

• Our key building block process will be white noise:

Definition
An n-dimensional covariance-stationary process {yt} is white noise if µy = 0, Γy (0) = Σ
and Γy (ℓ) = 0 for all ℓ ̸= 0. We write yt ∼ WN(0,Σ).

• Note that a white noise is linearly unpredictable based on its own lags:

E∗ (yit | {yτ}−∞<τ<t) = E(yit) = 0

• A white noise process may however be nonlinearly predictable

◦ Example: yt = cos(ωt) where ω ∼ uniform[0, 2π].
Hint: to show white noise property use cos(t1ω) cos(t2ω) = 1

2
(cos((t1 + t2)ω) + cos((t1 − t2)ω)).
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Lag operators

• A useful object in time series analysis are so-called lag operators

• If {yt} is a stochastic process, then the lag operator L is defined such that

Lyt = yt−1, for all t

• Some properties:

◦ L is a linear operator

◦ L−1 exists and is given by L−1yt = yt+1. It is also called the lead operator

◦ For any d ∈ Z, we have Ld = L(L(. . . (Lyt) . . . )) = yt−d
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Lag polynomials

• Using lag operators we can define lag polynomials
◦ Let Ψ(z) =

∑∞
ℓ=−∞Ψℓz

ℓ denote a matrix polynomial in the scalar z , and suppose the Ψℓ’s
are absolutely summable across ℓ. Define the lag polynomial

Ψ(L) ≡
∞∑

ℓ=−∞
ΨℓL

ℓ

◦ Given the definition of lag operators, applying a lag polynomial to a stochastic process {yt}
simply means that

Ψ(L)yt =

∞∑
ℓ=−∞

Ψℓyt−ℓ

• Lag polynomials can be either two-sided or one-sided:
◦ Two-sided: Ψ(L) ≡

∑∞
ℓ=−∞ΨℓL

ℓ = looks into the past & future

◦ One-sided: Ψ(L) ≡
∑∞
ℓ=0ΨℓL

ℓ = only looks into the past
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Lag polynomials

• Some properties of lag polynomials:

◦ We can combine conformable lag polynomials, e.g.

ζ(L) ≡ Ψ(L)Λ(L) =
∞∑

ℓ=−∞
ζℓL

ℓ, where ζℓ =
∞∑

m=−∞
ΨmΛℓ−m

◦ If c is a constant vector, then Ψ(L)c = Ψ(1)c = (
∑∞
ℓ=−∞Ψℓ)c

• Using white noise and lag operators, we can finally define the kinds of time series
processes that we will study in this class …
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Vector moving average

• A key process for us will be vector moving averages:

Definition
Let µ ∈ Rn, let Σ and Θℓ (ℓ = 1, 2, . . . , q) be n × n matrices, and set Θ0 = I. The process

yt = µ+

q∑
ℓ=0

Θℓzt−ℓ = µ+Θ(L)zt , zt ∼ WN(0,Σ)

is called a vector moving average of order q, VMA(q).

◦ VMAs are simply linear combinations of white noise processes

• We will pay particular attention to VMA(∞) processes. As we have seen, essentially all
linearized structural macro models admit a structural VMA(∞) representation.
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Vector moving average: properties

Straightforward to arrive at the VMA’s second-moment properties:

1. Impulse responses:
E∗(yt+ℓ − µy | zt) = Θℓzt

2. Autocovariance function:

Γy (ℓ) =

{∑q−ℓ
m=0ΘmΣΘ

′
m+ℓ if 0 ≤ ℓ ≤ q

0 otherwise

3. Spectrum:

sy (ω) =
1

2π

∞∑
ℓ=−∞

e−iωℓΓy (ℓ)
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Filters

• Could also take linear combinations of more general time series processes
• That’s what so-called filters do:

◦ A filter takes linear combos of a time series process to map that process into a new one:

xt ≡ Ψ(L)yt =
∞∑
ℓ=∞
Ψℓyt−ℓ

A simple example would be the first difference: xt ≡ yt − yt−1
◦ Verify that the ACF of a filtered series is given as

Γx(ℓ) =

∞∑
k=−∞

∞∑
m=−∞

ΨkΓy (ℓ+m − k)Ψ′m

◦ For the spectral density it can be shown that: [scalar case for simplicity]

sx(ω) = |Ψ(e−iω)|2sy (ω) = |
∞∑

ℓ=−∞
Ψℓe

−iωℓ|2sy (ω)
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Example: band-pass filter

• Filters are useful to isolate fluctuations at certain frequencies = “band-pass filter”

Ψ(e−iω) =

{
1 if |ω| ∈ [α, β]
0 otherwise

◦ The resulting series consists only of the sine and cosine waves at frequencies in [α, β]

◦ The total variance thus for example only reflects volatility at those frequencies:

Var(xt) = Var(Ψ(L)yt) =
1

2π

∫ π
−π
|Ψ(e−iω|2sy (ω)dω =

1

2π

∫
|ω|∈[α,β]

sy (ω)dω

• Using filters that isolate frequencies between 2 and 32 quarters tends to give something
reasonably similar to the well-known Hodrick-Prescott filter
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Example: band-pass filter

• Note that the band-pass filter is a two-sided filter:

Ψℓ =
1

2π

∫ π
−π
e iωℓΨ(e−iω)dω =

1

2π

∫
|ω|∈[α,β]

e iωℓdω =
sin(ℓβ)

πℓ
−
sin(ℓα)

πℓ

Source: Cochrane (2005)
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Vector autoregression

• The second key process will be vector autoregressions:

Definition
Let ν ∈ Rn, let Σ and Aℓ (ℓ = 1, 2, . . . , p) be n × n matrices. A covariance-stationary
process satisfying

yt = ν +

p∑
ℓ=1

Aℓyt−ℓ + zt , zt ∼ WN(0,Σ)

is called a Vector Autoregression of order p, VAR(p).

◦ Note that, with the matrix polynomial A(L) ≡ I −
∑p
ℓ=1 AℓL

ℓ, we may write this as

A(L)yt = ν + zt
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Vector autoregression: stationarity

• Note that stationarity is not guaranteed; i.e., a covariance-stationary process
satisfying the VAR equation may not exist. When does it exist?
• Sufficient condition: existence of a (one-sided) inverse of A(L)

◦ A lag polynomial Ψ(L) is called a one-sided inverse of A(L) if Ψ(L) =
∑∞
ℓ=0ΨℓL

ℓ is
absolutely summable and

Ψ(L)A(L) = I

We write Ψ(L) = A(L)−1

◦ We thus get
yt = Ψ(L)A(L)yt = µ+Ψ(L)zt , µ ≡ Ψ(1)ν

so we have mapped the VAR(p) into a VMA(∞).

• When does A(L)−1 exist? need all roots of det(A(z)) to be outside the unit circle
See Brockwell-Davis, Th’m 11.3.1 for the full result. For intuition, consider an AR(1), yt = ρyt−1 + zt .
Can solve out past y ’s if ρ ∈ (−1, 1).
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Vector autoregression: properties

Slightly more involved to arrive at second-moment properties:

1. Impulse responses are given via Ψ(L):

Ψ0 = I, Ψℓ =

min(ℓ,p)∑
m=1

AmΨℓ−m

2. Autocovariance function:

Γy (ℓ) =

{∑p
m=1 AmΓy (m)

′ +Σ if ℓ = 0∑p
m=1 AmΓy (ℓ−m) ℓ ≥ 1

3. Spectrum:

sy (ω) =
1

2π

∞∑
ℓ=−∞

e−iωℓΓy (ℓ)
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VARMA model

• Finally we can combine VMAs and VARs to obtain VARMAs:

Definition
Let µ ∈ Rn, and Σ, Aℓ (ℓ = 1, 2, . . . , p) and Θℓ (ℓ = 1, 2, . . . , q) be n × n matrices. A
covariance-stationary process satisfying

A(L)(yt − µ) = Θ(L)zt , zt ∼ WN(0,Σ)

is called a VARMA(p,q) process.

• Stationarity properties as well as expressions for impulse responses, autocovariances and
spectra generalize straightforwardly from the VMA and VAR cases
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Causality & Invertibility

Two important properties of VARMA processes are causality and invertibility:

Definition
A VARMA process {yt} is said to be causal with respect to {zt} if

yt ∈ span(zτ ,−∞ < τ ≤ t)

• In words: can write yt as function of current and lagged white noise realizations, zt−ℓ
• Sufficient condition is that A(L) has 1-sided inverse, giving VMA(∞) representation

⇒ Our structural macro models yield VMA representations and so in particular always give
causal VARMA processes for the observables yt
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Causality & Invertibility

Two important properties of VARMA processes are causality and invertibility:

Definition
A VARMA process {yt} is said to be invertible with respect to {zt} if

zt ∈ span(yτ ,−∞ < τ ≤ t)

• Can obtain the white noise realizations zt as a function of current and lagged values of
the process itself, yt−ℓ.

• Sufficient condition is that Θ(L) has 1-sided inverse, giving a VAR(∞) representation

⇒ This property is far from guaranteed in our structural models. E.g. if we have 5 shocks in z
but only 2 observables in y , then the process can’t possibly be invertible.
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Illustrating invertibility

• Let’s provide a quick illustration of invertibility using the canonical three-equation NK
model Galí (2007), Woodford (2011)

◦ Consider a model with three shocks and no endogenous persistence:

yt = Et (yt+1)− (it − Et (πt+1)) + σdεdt (IS)
πt = κyt + βEt (πt+1)− σsεst (NKPC)
it = ϕππt + σ

mεmt (TR)

◦ Solving the model gives a static VMA representation:ytπt
it

 =
1

1 + ϕπκ

 σd ϕπσ
s −σm

κσd −σs −κσm
ϕπκσ

d −ϕπσs σm


︸ ︷︷ ︸

Θ

×

εdtεst
εmt


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Illustrating invertibility

ytπt
it

 =
1

1 + ϕπκ

 σd ϕπσ
s −σm

κσd −σs −κσm
ϕπκσ

d −ϕπσs σm


︸ ︷︷ ︸

Θ

×

εdtεst
εmt



• It’s easy to verify that, for standard parameter values, Θ is invertible

• But now suppose that we only observe yt and πt :

◦ Then we certainly can’t disentangle all three shocks {εdt , εst , εmt }

◦ More precisely: can back out εst , but impossible to disentangle εdt and εmt
Can you see why?
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Wold decomposition

Proposition
Let {yt} be an n-dimensional covariance-stationary time series. There exists an n × n lag
polynomial Ψ(L) and n-dimensional ut ∼ WN(0,Σ) such that

yt = Ψ(L)ut + dt , Ψ(L) = I +

∞∑
ℓ=1

ΨℓL
ℓ

and where:
1. Ψ(L) is square-summable

2. ut = yt − E∗(yt | {yτ}−∞<τ≤t−1), E∗(ut | {yτ}−∞<τ≤t−1) = 0, Σ = var∗(yt | {yτ}−∞<τ≤t−1)

3. {yt} is invertible with respect to ut , i.e. ut ∈ span(yτ ,−∞ < τ ≤ t)

4. {dt} is a purely deterministic process, i.e. var∗(dt | {dτ}−∞<τ≤t−1) = 0
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Wold decomposition: discussion

• The decomposition says that any covariance-stationary time series can be written as

VMA(∞) + deterministic component

◦ Note: this formally justifies the loose impulse-propagation discussion in Lecture 1

• Interpretation of the u’s

◦ The Wold decomposition does something very simple: it splits a process {yt} into
one-step-ahead prediction errors and a perfectly predictable residual

◦ Note: we can thus also turn the Wold decomposition into a VAR(∞)

A(L)yt = ut + d̃t , A(L) = Ψ(L)
−1, d̃t = Ψ(1)

−1dt
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Wold decomposition: discussion

• The Wold decomposition is nothing but yet another way of summarizing the
second-moment properties of a time series process

◦ Nothing guarantees that the Ψ’s are interesting. They are just coefficients on reduced-form
prediction errors.

◦ We can freely map between autocovariance functions and the Wold decomposition:

Ψℓ = Cov(yt , ut−ℓ)Σ
−1

◦ The Wold decomposition is our third fundamental representation. For second-order
properties, we can freely map between ACF, spectrum, and Wold decomposition.

• It thus follows in particular that the Wold decomposition is identifiable from aggregate
time series data (just like autocovariances & spectral densities)
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Summary

• We saw some basic time series models/concepts

• So far everything was reduced-form:

◦ Presented ACF/spectral density/Wold decomposition as three ways of summarizing the
second-moment properties of observable time series data

◦ These reduced-form objects are in principle estimable, but of course nothing says that they
are interesting, i.e. related to our Θ’s in structural VMA representations

• Next: what kind of addt’l economic assumptions allow us to learn about the Θ’s?
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